
Beyond Clients and Servers
Erik van Mulligen' 2, Teun Timmers1

'Department of Medical Informatics, Erasmus University Rotterdam, The Netherlands
2University Hospital Dijkzigt Rotterdam, The Netherlands

Computer scientists working in medical informatics
have to face the problem that software offered by
industry is more and more adoptedfor clinical use by
medical professionals. A new challenge arises ofhow
to combine commercial solutions with typical
medical software that already exists for some years
and proved to be reliable with these off-the-shelf
solutions [1]. With the HERMES project, this new
challenge was accepted and possible solutions to
integrate existing legacy systems with state-of-the-art
commercial solutions have been investigated. After a
period of prototyping to assess possible alternative
solutions, a system based on an indirect client-server
model was implemented with help of the industry. In
this paper, its architecture is described together with
the most importantfeatures currently covered. Based
on the HERMES architecture, both systems for
clinical data analysis and patient care (cardiology)
are currently developed.

INTRODUCTION
After three decades of medical informatics and a
large amount of local solutions available, the
question arises whether a new approach might bring
a solution to provide clinicians with the best possible
computer support. This new approach could try to
combine the current power of commercially available
applications with the medical legacy systems into a
medical workstation.

Exactly this was the main objective of the HERMES
project when it was started about six years ago [2].
From a computer scientific point of view, the
question arose whether it was technically possible to
encapsulate existing software, both commercial and
local developments without modification and make
their functions accessible as a reusable component.
An architecture that supports the integration of
reusable components into medical workstations for
various medical tasks and a user friendly interface
through which the components can be addressed
were the other two main objectives for the HERMES
project.

The project started with the development of a
prototype called MW2000, with which the technical

feasibility of such an approach was tested [3]. The
available computer power, network technology and
ability of graphical user interfaces were assessed as
being adequate, stable and mature enough for a
medical workstation. From a user evaluation of the
prototype MW2000, it was concluded that such an
approach really can help clinical professionals with
their task. With the help of industry, a HERMES
consortium has formed that developed from
experience with the prototype an open integration
architecture, and based on that architecture medical
workstations for clinical data analysis, for the
outpatient clinic for patients suffering from heart
failure and for occupational health care have been
developed [4].

A project that addresses similar research questions is
the HELIOS project [5]. Although their prime focus
has not been the encapsulation of existing sofware in
reusable components, but the creation of a software
engineering environment that supports the structured
development of new components, the technical
mechanism is comparable. Through a software bus,
components can activate functions resident in other
components. Integration in this project is restricted to
components that have been developed according
within the HELIOS environment and integration of
existing software did not receive much attention.

Integration architectures based on reusable
components have been proposed by others. Greenes
promoted this practice as a mechanism to build
complex applications and reach a critical mass of
functionality [6]. Outside medical informatics, the
Object Management Group (OMG) proposed a
Common Object Request Broker Architecture
(CORBA), consisting of a common object repository
[7]. In their view, each object has methods through
which components can be accessed and data can be
exchanged. Currently, a first implementation of
CORBA is available. Other initiatives, such as
Distributed Computing Environment (DCE) and
Open Network Communication (ONC) Remote
Procedure Calling (RPC) are less ambitious and
mainly focus on transparent network-wide procedure
calls (no brokering or encapsulation mechanism) [8].

0195-4210/94/$5.00 i 1994 AMIA, Inc. 546

CORBA, DCE, and RPC bind a call and the actual
procedure at compile time. In HERMES, we use very
late binding; at execution time, a generic call is
delivered to a central broker, bound by this broker to
a specific procedure call and finally this call is
forwarded to a service and executed. With this
feature, it is possible to very easily switch between
alternative components that provide the requested
functionality and (2) allows the broker to evaluate
different break-downs of a generic call for particular
criteria (such as speed, CPU-cost, reliability etc.).

In many research projects integration is limited to
data. Projects such as IAIMS and Hewlett Packard's
Physicians Workstation primarily aim at combining
data from different (heterogeneous) sources [9,10].
Research topics in this direction are related to data
semantics, modeling and communication. Earlier
work in the field of integration investigated other
communication mechanisms between the processes
and sources involved in the integration [11,12].

In this paper, we will extend on the basic HERMES
methodology that turns existing legacy systems into
open reusable services and elaborate on those
features that have proven to be esential for such an
approach in the medical domain.

METHODOLOGY

Indirect client-server model
In the traditional client-server model, a client
composes a request and forwards it to a server; the
server on its turn will compose a reply and send it
back to the client. In this model, the client selects the
service (and host) that can solve the request.
Furthermore, both client and server have to agree on
the syntax and semantics of the message language in
which the request and reply are expressed; any
change must be implemented in both client and
server. One solution to this is to reduce the mutual
dependence between client and server by having a
mediator that establishes indirect client-server
communication. The task of this mediator is to do
some interpretation and transformation of the
requests that are exchanged between clients and
servers.

HERMES utilizes as mediator a brokering
mechanism that dynamically searches for a binding
between a request of the client and the available
procedures and data of the services. An overview of
this mechanism is shown in Figure 1. This brokering

mechanism is supported by a broker that reads an
object-oriented database with all information about
its environment: there are classes of requests with
request instances, in the service classes instances
identify the services that are available in the network,
and a host class contains an instance for each host.
Mandatory parameters for the various requests are
specified as instances in parameter classes.
Furthermore, a user is represented by an instance in
one of the user classes. Relations between all these
instances contain the operational knowledge of what
service can handle what request, what mandatory
parameters should be included in a request, on what
host a service is resident and what preferred services
are specified for each user.

i mHERMES ,w|".cmii csS
Intwfaces kI IIPlugs I [OPIetin
for Ieh
mdica l
L2"J

Fe"phicl

Figure 1. Overview of the HERMES indirect client-
server architecture.

New requests, parameters, services, hosts, and users
can be made operational by creating objects for them
in an object database. Relations between objects
specify the various bindings that have to be made;
e.g. the relation 'can_be_handled_by' between a
request and a service object defines that that service
can handle that request. Through this broker, clients
can directly benefit from newly installed services and
hosts, without having to change the client.
Furthermore, differences between the mandatory
parameters for services that supply similar
procedures are solved by the broker by adding these.
The current brokering algorithm selects the first from
a user-defined list of alternative services.

Resource manager
Although the client-server model offers an elegant
mechanism to separate functionality into reusable
services that can be shared by different clients, the
disadvantage of all these separate processes is a
significant increase of both computer load and
memory use. From experience with the prototype
integrated workstation, we learned that efficient
resource management is essential to improve the

547

throughput of systems that use a brokered client-
server mechanism. Therefore, a resource manager
has been inserted between the client and server
communication that attempts to combine per user
requests to already open service sessions. This
strategy reduces the initial time to start a service and
initialize a context. In addition, the resource manager
will add user preferred parameters to requests and
overrule the value of parameters set by the broker.

Message Language
Requests are composed by a client and follow the
HERMES message language syntax. In this message
language, all dependencies on the host's hardware
and on the client process are avoided so that it can be
passed between any host and process. For the
transport and data level of the communication, a
commercially available product has been selected
that is supported on many platforms (Berkeley
sockets).

The message language uses tags to identify the
various parameters in a message. There is a set of
predefined tags that are specified in all requests.
Special constructs are added to include lists and
objects (C-structures), and to automatically encrypt
and decrypt data. One important feature of the
HERMES kernel is that parameters do not necessarily
have to be explicitly defined in the HERMES kernel.
This allows dynamically construction of new
parameters, thus freeing the kernel from having to
know all possible parameters in advance. A special
feature is the raw data type that can be used to pass
data that does not follow the syntax; with this
envelope feature 'foreign' messages (such as HL7)
can be passed without having the broker and resource
manager interpret this data for obedience to the
syntax.

HERMES library
To free the developer from knowing how to express
internal data structures and variables in the HERMES
message language and to allow modifications or
replacement of the message language by newly
developed standard message languages (such as
ASN-1), a special library has been provided. Both the
client and the service use this library provided with
HERMES as their stubs that translate between the
internal data and request representation and the
HERMES message language. The library consists of
a set of high-level functions through which a client
can, e.g., compose and send, and identify internal
data that should be included in the request. Most

importantly, we extended the stub's functionality so
that it automatically includes parameters that are
essential for the client's identification (hostname,
username, process number, etc.). For the server, the
library provides procedures that parse the message
and construct an internal representation of its
contents.

Callback mechanism
The HERMES library contains procedures that
facilitate true asynchronous communication by
installing a callback; this callback is automatically
executed by the stub when an answer is received by
the client. The server can use the same mechanism to
install a callback for receiving requests. The stubs
also handle several internal requests that, are
composed by the broker and resource manager to
keep track of the status of clients and servers.
Exception handling, connection termination, session
management, and login handling are automatically
provided by the stubs.

The HERMES library has been optimized for
transmission of large data volumes (series of images
or multi-record data for clinical research). In that
case, data is automatically stored on a file to avoid
internal memory problems.

Application Programming Interfaces
Developers can use the HERMES library to write
macro procedures that allows them to define a
procedure that composes a request for a service. The
arguments of the procedure are passed as data for the
request to the service. A set of these procedures
forms the Application Programming Interface (API)
for a service. These procedures are made available in
libraries that can be linked with clients (see Figure 2).

Independence
One of the most important features of the HERMES
integration architecture is its layered design that
allows new commercial solutions that provide similar
functionality to be easily put in. First of all, the
broker mechanism allows a client to be truely
independent from a service. Secondly, the HERMES
library allows both client and server to use
procedures without having to know the message
syntax. The HERMES library procedures can be
modified to generate messages according to a
standard message language when available. Apart
from this, client and servers can be developed
separately, using different programming languages
and operating systems.

548

Figure 2. Network of clients and services
communicating through HERMES APIs which
provide easy access to data andfunctions.

Encapsulation
Another key feature of the HERMES integration
architecture is its ability to embed legacy systems
without modifications in a plug. This plug behaves to
HERMES as a network-accessible true service, but
translates incoming requests to the data format and
instructions for the underlying system. These
instructions can be either formulated as a batch for
systems that accept batch processing or as a series of
keystrokes for interactive applications. For
integration of PC software, the plug can be enhanced
with an additional layer between the plug and
software that emulates a MS-DOS PC (commercially
available).

Sessions
The notion of a session is important when integrating
existing systems. Many of these systems are stateful,
i.e. the meaning of an action is dependent on
previous actions, and requires preservation of a
context. Although a connectionless approach (with
no notion of sessions) requires less resources and is
much easier to realize in a network, it lacks this
essential feature for encapsulation of existing
systems. In addition, when clients share stateful
services they can exchange information through the
created context and avoid redundant interaction with
the user to recreate the context. Of course,
connectionless communication can be simulated in
HERMES by shutting a session directly after
creation. Note that the resource manager incorporates
functionality to reduce the resource load of a session
oriented communication mechanism by reusing open
connections.

Data model server
All data available in the network is described in a
data model. This description includes meta-data
about the type, the range, the coding, the medical
name, the size, keys, etc. and (medical) relationships
with other data. This data model is supported by a
data model server that offers other components
(clients and services) the possibility to query for
information. The data model contains per object a
quadruple (dbms, database, relation, attribute) that
exactly identifies where the data is located.

The data model server allows various conceptual
views on the data. These views can be created by
medical professionals and contain medical
relationships between the data. The end nodes of this
conceptual tree are links to attribute elements in the
data model. These views can be modified
independently of the underlying data model (and
consequently database schema).

User-interface
All interaction with the user is window-oriented. In
HERMES, the user-interface has been implemented
with XI1. Although most interaction with the user is
handled by a client, it is not exclusively restricted to
a client. Therefore, it is essential that the window
systems, such as Xli, enables remote services to
interact with the user on the local host.

Secondly, in HERMES clients can be composed of
subclients. To allow management of the windows of
the subclients, their user-interfaces have to be
integrated as part of the client's user-interface. This
feature, called reparenting, is supported by X11 and
included as a special option in the message syntax.
The HERMES stubs contain code to automatically
perform user-interface reparenting when this tag is
included in the message.

ASSESSMENT
Flexibility and extensbility
The very late binding of a request to the actual call to
a procedure in a service has proven to be a very
powerful feature in the development of integrated
medical workstations. Already during the
development, similar functionality was offered by
different applications. With one single client, we
were able to switch between different services
without having to rewrite a single line of code.
Furthermore, it proved to be powerful for version
control; depending on the user, different versions of a
service can be accessed by the same client. New

549

functionality could also be easily added by editing
the broker's database with a graphical editor.
However, no checks were included to preserve the
correctness of the name space (i.e. duplicate requests
can coexist). To improve the management of
requests, a special editor has to be developed that
ensures consistency.

Plugs
We created several plugs for batch-oriented systems
and interactive systems with and without PC
emulation. It appeared that writing a plug is not a
trivial task and that only little of the code is generic.
We divide a plug into three main modules: (1)
translation of the data in the HERMES format to the
application format, (2) generation of instructions for
the application from the request, and (3)
transformation of the application's output to the
HERMES format. Code for step (1) can be generated
more or less automatically. With a macro recorder
interactive applications can be automated in step (2);
for batch-oriented applications more programming is
required. Step (3), transformation of the output is
typically a manual programming job and little
automated support can be given.

CONCLUSIONS
For introduction of open system technology and
distributed processing in a medical environment, it is
essential to provide an architecture that is able to
cope with existing systems (both legacy information
systems and systems from different vendors) without
having to modify these systems. Furthermore,
attention should be paid to develop a maximally
flexible approach that allows systems to be replaced
with new, preferably suited for operation in a client-
server environment services without having to
change all dependent applications/clients. A broker
that binds requests to services and manipulates
messages seems a suitable approach to this problem.

The price to be paid for a client-server approach is an
increase in processor and memory load, which can be
minimized by introducing a special server that
monitors all running services and tries to combine
requests to a single server process. The reusability of
the server components in HERMES favours the
development of medical applications for specific
medical tasks rather than a generic application for
various tasks. Our experience with building an
environment for clinical data analysis and for the
outpatient clinic for patients suffering from heart
failure supports this.

HERMES offers an effective path that allows for a
more evolutionary than revolutionary approach to
integration. Compared with other efforts in this
direction, its capability to embed legacy systems in
an open environment favors its use in domains with a
large and rapidly changing installed base of software
(typical for the medical domain). The price to be paid
for this is some computational overhead, which
however can be compensated by intelligent resource
management. Our experience is that the HERMES
approach allows development of reusable
components that can be shared by various
applications for patient care and clinical data
analysis.

Acknowledgement
Hewlett Packard Medical Products Group Geneva is
greatly acknowledged for their financial support.

Reference
[1] Power LR. Post-facto integration technology: new discipline

for an old practice. In: Hg PA, Ramamoorthy CV, Seifert LC,
Yeh RT, eds. Proceedings of the First Conference on Systems
Integration. IEEE Computer Society Press, 1990:4-13

[2] Van Mulligen EM, Timmers T, Van Bemmel JH. A new archi-
tecture for integration of heterogeneous software components.
Methods of Information in Medicine 1993;32:292-301

[3] Van Mulligen EM, Timmers T, Van den Heuvel F, Van
Bemmel JH. A prototype integrated medical workstation
environment. Computers Methods and Programs in
Biomedicine 1993:39:331-341

[4] Comet R, Van Mulligen EM, Timmers T, A cooperative
model for integration in a cradiology outpatient clinic.
Accepted for SCAMC'94.

[5] Degoulet FJ, Coignard J, Scherrer JR et al.. The Helios
European Project on Software Engineering. In: Timmers T,
Blum BI (eds.) Software Engineering in Medical Informatics.
Amsterdam: Elsevier Scientific Publishers. 1991:125-37

[6] Greenes RA. Promoting productivity by propagating the
practice of "plug-compatible" programming. In: Miller RA, ed.
Proceedings of the 14th Annual Symposium on Computer
Applications in Medical Care. Washington DC. New York:
IEEE Computer Society Press 1990:22-6

[7] OMG. The Common Object Request Broker: Architecture and
Specification. OMG Document 91.12.1, X/Open publisher

[8] OSF. Introduction to OSF DCE. Englewood Cliffs, New
Jersey: Prentice Hall, 1992.

[9] Young CY, Tang PC, Annevelink J. An Open Systems
Architecture for Development of a Physician's Workstation.
In: Clayton PD, ed. Proceedings of the 15th Annual
Symposium on Computer Applications in Medical Care.
Washington DC. New York: McGraw-Hill Inc. 1991:491-5

[10] Roderer NK, Clayton PD. IAIMS at Columbia-Presbyterian
Medical Center: accomplishments and challenges. Bull Med
Libr Assoc 1992;80:253-62.

[11] Sinha A. Client-server computing. Communications of the
ACM 35, 7 (1992):77-97

[12] Wiederhold G. Views, objects and databases. IEEE Computer,
19;12:37-44

550

